Design: Storage APl Changes to use timestamps
Author: Eric Milkie

Summary & Motivation

Change the Storage API layer to support providing explicit transaction timestamps to storage
engines. These changes are necessary to eventually support multi-document transactions
across a sharded system. Code modifications for this project will mostly be limited to files in
src/mongo/db/storage/.

Behavioral Description
After this project is complete, the oplogHack logic used for oplog document visiblity will have
been moved from the storage engine glue layer to the WiredTiger layer.

Detailed Design

Note: SnapshotName is currently a class that wraps a uint64_t. Itis the same size as a
Timestamp. As part of code cleanup after the completion of this project, we should consider
renaming and simplifying this class, as it was originally conceived for named snapshot support
for the "read concern" majority project. This can be done as part of the snapshot thread
removal, slated for work in the Replica Set Point In Time Reads project.

In addition, there is a desire to make the SnapshotName class large enough to support terms.
We can easily make SnapshotName wrap 16 bytes instead of 8, but it will require a [easy] build
configuration change to the WiredTiger Commit Timestamps project to support 16 byte
timestamps there.

New function: Supply a timestamp for a transaction
virtual Status RecoveryUnit::setTimestamp (SnapshotName timestamp) ;

e The body of this function will call WT SESSION::timestamp transaction(),
passing in the timestamp.

e |tis presumed that only transactions that perform writes will call this function, to assign
timestamps. MongoDB aborts all read transactions anyway, so assigning timestamps for
such transactions would have no effect.

e If this function is called multiple times in a WriteUnitOfWork, the timestamps may only
move forward (or stay the same). An error will be returned if setTimestamp() attempts to
assign a timestamp that is sooner than a previously assigned timestamp for a
transaction.

e |n addition to this work, add setCommitTimestamp(), a similar function to
setTimestamp(). Instead of calling timestamp_transaction(), it will set a member
variable. At commit time in _txnClose, the timestamp will be passed in, if the transaction
commits.

New function: Use a timestamp to read at a point in time
virtual Status RecoveryUnit::selectSnapshot (SnapshotName timestamp) ;



This function may optionally be called prior to calling getCursor() on a RecordStore.
This function could be called again after calling getCursor(); this would be useful to, say,
change to a more recent snapshot at query yield time. This is the current behavior of
read-concern-majority, for example.

This function cannot be called while a transaction is active: invariant (! active)
The data returned from the cursor will reflect data from transactions that have committed
with write timestamps up to and including time. If a transaction had multiple
timestamps assigned to individual writes, such a transaction could be sliced by the read
operation. Slicing is only expected to occur for transactions that were committed by the
replication machinery for oplog application.

The body of this function will set a member variable for the snapshot time in the
RecoveryUnit. At the next begin_transaction, it will use the stored time as the
read_timestamp parameter.

Modify existing function: Update the "majority commit" snapshot
virtual Status SnapshotManager::setCommittedSnapshot (const

SnapshotName& name) ;

This function is pre-existing in current code.

Its behavior will need to change. It will need to inform the storage engine of the
majority-committed snapshot time, so that the storage engine can clean up older
snapshots.

Informing the storage engine will consist of calling set oldest timestamp (),
passing in the timestamp parsed out of name.

Remove existing OplogHack visibility code

This code currently exists to ensure oplog entries always become visible in order,
despite their write transactions possibly committing out of order.

WiredTiger will expose the maximum timestamp such that all lower timestamps are
committed with the syntax “get=all committed” to

WT CONNECTION::transaction timestamp. Thatcan be saved across
WiredTigerSessionCache: :waitUntilDurable to determine the known-durable
point in the oplog.

There is also code to ensure that the visibility logic still works in the case that the
process crashes and restarts (since the visibility logic is not durable, but the transaction
committing of oplog entries could be durable).

This project work will be to see how much of this logic can be removed from
wiredtiger_record_store.cpp.

Out-of-order oplog entry application on secondaries

Due to the way a secondary batches operations into multiple threads, replicated oplog
entries on secondaries are not applied in the exact order they were applied on primaries.



This can result in temporary violations of unique key constraints for secondary indexes
(the _id index's constraint will never be violated because individual document writes are
still serialized in their original order).

This is currently handled in WiredTiger via a method of storing multiple documents in a
single entry in a unique index.

This method will be problematic for reads that read at a timestamp between the time
when the first conflicting document originally got removed and the second document
originally got inserted.

This design is now complete. It will be included in the Single Shard Point-In-Time Reads
project.

Upgrade/Downgrade Design
No consideration is necessary for upgrading, as this project does not change the on-disk format
or the user-facing API.

Open Questions

What happens in the following case: Transaction A sets ts 1. Transaction B sets ts 2
then commits. Transaction A raises its ts to 3 then commits. A reader asks to read ts <=
2. Is it able to see the effects of Transaction B even though it can't see Transactions A's
write from ts1="?

o Answer: | am going to assume that the transactions in this question all do writes
immediately after setting timestamps (otherwise, the question doesn't make
sense, so this is a safe assumption.) The answer is that readers at point-in-time
"2" will see Transaction A's write for ts 1 but not for ts 3, and it will also see
Transaction B's write at ts 2. This will mean that Transaction A is sliced for this
particular read. This situation is only expected to occur for transactions executed
by the replication subsystem on secondaries, where multiple timestamps will be
assigned in each transaction.



