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Abstract
Intel® Optane™ DC Persistent Memory resides on the mem-
ory bus and approaches DRAM in access latency. One avenue
for its adoption is to employ it in place of persistent stor-
age; another is to use it as a cheaper and denser extension of
DRAM. In pursuit of the latter goal, we present the design of
a volatile Optane NVRAM cache as a component in a storage
engine underlying a widely used commercial database. The
primary innovation in our design is a new cache admission
policy. We discover that on Optane NVRAM, known for its
limited write throughput, the presence of writes disproportion-
ately affects the throughput of reads, much more so than on
DRAM. Therefore, an admission policy that indiscriminately
admits new data (and thus generates writes), severely limits
the rate of data retrieval and results in exceedingly poor perfor-
mance for the cache overall. We design an admission policy
that balances the rate of admission with the rate of lookups
using dynamically observed characteristics of the workload.
Our implementation outperforms OpenCAS (an off-the-shelf
Optane-based block cache) in all cases, and Intel Memory
Mode in cases where the database size exceeds the available
NVRAM. Our cache is decoupled from the rest of the storage
engine and uses generic metrics to guide its admission policy;
therefore our design can be easily adopted in other systems.

1 Introduction

Intel® Optane™ DC Persistent Memory is one of the first
widely available non-volatile memory (NVRAM) products,
released two years prior to the time of this writing. At present
the community is still grappling with the question of how to
best use it in the storage stack. Although one way of adoption
exploits its persistence (e.g., using it in place of another block
storage device or turning applications’ volatile memory into
persistent), another avenue is to use it as a volatile extension to
DRAM, a denser and cheaper one at that. Our study explores
the second option.

We design and implement NVCache: an Optane NVRAM-
resident volatile cache for AnonStorageEngine [2] – the stor-

age engine underlying a widely used commercial database [1].
At the heart of any cache is an admission policy. An admis-
sion policy decides, upon a cache miss, whether the missing
block should be admitted, i.e., kept in the cache after being
retrieved from a lower level of storage. With few exceptions,
caches indiscriminately admit data on read misses, differing
only in whether they admit it on write misses. We found that
such a simplistic policy decreases the throughput of write-
heavy workloads up to 80% and read-only workloads by
about 20%. Admitting new data into a cache generates writes
– as every newly inserted cache block must be written into the
cache memory – and limited write throughput is a well known
property of Optane NVRAM [36]. What was not previously
known was that writes to Optane NVRAM disproportionately
affect the throughput of concurrent reads. While writes affect
concurrent reads on any storage device, our measurements
show that this effect is much larger on Optane NVRAM than
on its counterpart DRAM (see §2). An overly eager admis-
sion rate will thus limit the rate at which existing data can
be retrieved, diminishing the utility of the cache. Admission
policy must, therefore, balance between the rate of admit-
ting new data and the rate of accessing existing data. Our
main contribution is a new admission policy that embodies
this principle.

Although our work is a case study exploring a specific point
in a vast design space, our findings apply broadly to similar
systems. NVCache is decoupled from the rest of the storage
engine and our new admission policy relies only on the rates
of data admission, removal and lookup for its decisions, so
our design is easy to adopt in other storage engines or stand-
alone caches. While our work addresses the idiosyncrasy
of one specific storage technology, we hypothesize that the
admission policy we propose will be relevant for any caching
device where writes disproportionately impact reads.

The rest of the paper is organized as follows: §2 demon-
strates that writes disproportionately affect the throughput
of reads on Optane NVRAM. That section also puts our
work in the broader context of multi-tier caching systems,
and provides relevant background on AnonStorageEngine.
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§3 presents the basics of NVCache design, which relies on
well-known methods, and then unveils the design of the new
admission policy, backing its features with experimental data.
§4 compares NVCache with off-the-shelf alternatives: Intel
Memory Mode [5] and OpenCAS [7], and reports the effect
on performance-per-$ of replacing part of system DRAM
with Optane NVRAM. §5 describes related work and §6 sum-
marizes our findings.

2 Background and Motivation

2.1 Optane memory’s Achilles’ heel

Optane NVRAM has a superpower: read and write latency
for small operations compete with DRAM, reads being only
about 2× slower and writes being roughly the same latency as
DRAM1 (see [36], Fig.2). Read throughput is impressive: se-
quential reads reach 6GB/s per NVDIMM (see [36], Fig.4(a)),
and with a single CPU supporting up to six NVDIMMs, the
throughput can climb into double digits.

Optane also has an Achilles’ heel: write throughput is slug-
gish and gets worse with many threads. Figure 1 shows se-
quential write throughput to Optane NVDIMMs (with one and
two DIMMs) and to an Optane SSD P4800X (built with the
same memory technology but packaged as an SSD). Writes
to Optane memory are barely competitive with the SSD us-
ing one thread, but show negative scaling as we use more
threads2.

This phenomenon is not new and was reported by others
(see [36], Fig.4(b)). What was not previously shown, and is
even more crucial for cache design, is that sluggish writes
disproportionately affect the throughput of reads. Figure 2
shows the read throughput on Optane NVRAM dropping
precipitously in the presence of concurrent writers. Only a
single concurrent writer causes read throughput to drop from
a solid 12GB/s to a unimpressive 3.4 GB/s (a 72% loss). With
eight writer threads, reads proceed at only 0.8 GB/s (a 93%
slowdown)3. The same experiment on DRAM produces a
milder degradation in read throughput, with a loss of only
18% with one concurrent reader and of 35% with eight.

The implication of this finding for cache design on Optane
NVRAM is that an admission policy that eagerly accepts new
data (and thus generates writes) will disproportionately affect
the speed of reads, i.e., cache lookups, severely limiting the

1Writes into NVRAM need only to reach the processor’s ADR (Asyn-
chronous DRAM refresh domain).

2Our data is for non-interleaved writes. Interleaved writes will achieve
higher throughput (and also negative scaling with more threads, see [36],
Fig.4(c)), but interleaving can only be used on NVDIMMs in the same
NUMA node, which was not the case on our system configured according to
manufacturer recommendations ( [6], Table 17). NVRAM access was done
via memcpy from a mmaped file residing on a DAX file system in NVRAM.
This was the fastest method and it produced similar results as the fastest
methods discovered by others [36].

3Our system has 16 cores, so CPU contention is not the issue.

Figure 1: Sequential write throughput to Optane persistent
memory using one or two NVDIMMs, and to Optane SSD.
Parameters of the experimental system are described in §3.2.1.

Figure 2: Read throughput for Optane NVRAM (two
NVDIMMs) and DRAM in with 8 reader threads and with
increasing concurrent writers. The read throughput on Optane
NVRAM is disproportionately affected. Parameters of the
experimental system are described in §3.2.1.

effectiveness of the entire system. An admission policy, must
therefore carefully balance the rate of cache admission rel-
ative to the rate of lookups.

2.2 Multi-tier caching systems

We contribute a new design of a single-tier volatile cache in
Optane NVRAM; since this cache co-exists with the DRAM
cache in our storage engine (as we explain in §3), it is helpful
to discuss it in the broader context of multi-tier caches and
tiered memory systems. Here we provide a broad overview of
these areas, deferring the comparison with specific projects
until §5.

A multi-tier caching system is comprised of multiple stor-
age devices organized as a hierarchy or a pool of caches [13,
15–19,22,23,25,27,28,34,37,38]. Tiers might include DRAM
and NVRAM in front of an SSD (as in our system), a SSD in
front of an HDD, or any other combination thereof, but with
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faster, more expensive storage generally in front of slower,
less expensive storage. Studies of these systems investigate
how to divide the data between the tiers to maximize perfor-
mance. Broadly speaking, there are two design approaches:
cooperative and independent. In a cooperative design the
tiers are tightly coupled: one tier may evict data into another,
and may inform it about the access patterns observed within
its space. In an independent design each tier makes its own
decisions about what data to admit and evict. There is also
a middle ground, where one tier may take hints about data
access characteristics from other tiers, but does not directly
accept data or directives about what to cache. Independent
caches are easier to design and maintain from software engi-
neering perspective, because they are less coupled with the
rest of the system, and for this reason they are easier to port to
other systems. Our design falls into the independent category,
as we explain in §3.

Multi-tier memory systems can be thought of as a sub-
category of multi-tier caches, where one tier is DRAM and
another is NVRAM or some other kind of slower mem-
ory [11, 12, 21, 24, 29, 31–33, 35]. These systems are typically
implemented in the kernel or in a language runtime [12,31,32]
and are transparent to applications. The main challenge in
building them is deciding which pages must go to the “fast”
tier and which ones to the “slow” tier – the same problem that
must be addressed in cooperative caches.

Like all caches, multi-tier systems innovate on admission
and eviction policies. An admission policy tells the cache
when to insert new data; an eviction policy tells it which
data to evict when the space becomes scarce. Typical caches
always admit data on reads and vary as to whether they admit
data on writes: i.e., write-allocate or not. Multi-tier caches
may also admit data as it is evicted from another tier. While
most caches tune their admission algorithms to maximize the
hit rate, our algorithm takes into account the rate of admission
for reasons explained in §2.1. So our main contribution is
the admission policy that is based on a fundamentally new
principle. We believe that our innovation in admission policies
will be relevant for any cache storage medium where the
presence of writes disproportionately affects the throughput
of reads.

2.3 AnonStorageEngine

AnonStorageEngine is a persistent transactional key-value
store [2]. Internally it uses a B+-tree to organize the data.
AnonStorageEngine materializes data in memory (in its
DRAM cache) in a different format than it is stored on disk.
Data on disk contains efficiently encoded keys and values.
The keys in each block are sorted, but not indexed. When
AnonStorageEngine reads a block from disk it decodes and
indexes it, so that the data can be searched and updated ef-
ficiently. Furthermore, on-disk data may be optionally com-
pressed and/or encrypted, and AnonStorageEngine decom-

presses and decrypts it before placing it in DRAM.
The main advantages of this two-pronged approach to data

representation is that it provides efficient space utilization for
stored data and fast operations for cached data. It is also the
reason we adopted the independent design for our NVRAM
cache, as we explain in §3.1.

3 NVCache: a step-by-step design

We first describe the baseline architecture of NVCache, which
builds upon well-known techniques. Then we describe the
evolution of the new admission policy design, beginning with
a naïve architecture and presenting experiments that motivate
the next feature.

3.1 NVCache basics

As explained in §2.3 AnonStorageEngine uses different for-
mats for data stored persistently on disk and for data material-
ized in memory. On-disk data is stored in blocks. In-memory
data, which lives inside the engine’s fixed-sized DRAM cache,
is stored in pages. Blocks contain efficiently encoded keys
and values. Pages additionally contain indexing and other
structures to facilitate fast operations.

NVCache sits underneath the DRAM cache. Naturally we
had to make a decision whether to use NVCache for caching
pages, blocks or both. AnonStorageEngine already has a
DRAM cache for pages, so caching pages would amount
to extending the existing cache to use both DRAM and
NVRAM – a tiered cache similar to the recent one in Face-
book’s RocksDB [25]. Caching blocks would entail creating
a stand-alone block cache that sits between the DRAM cache
and the block device. We decided to cache blocks, and not
pages, for the following reasons.

AnonStorageEngine’s pages are organized in memory as a
B+-tree for efficient searching and updating, and pages con-
tain pointers to other pages. If a page were to be manually
copied (at application level) from DRAM to NVRAM in
a tiered cache, the virtual addresses would change and any
pointers would have to be updated accordingly. Updating
them is an error-prone process that would require locking or
other form of synchronization. AnonStorageEngine is lock-
free on the read-path and mostly lock-free on the write path:
adding synchronization would substantially compromise a
core advantage of its original design.

An alternative to implementing a tiered cache manually
would be to use transparent tiered memory implemented in
the kernel, such as Nimble [35] or HeMem [29], or to build on
top of CacheLib: Facebook’s library for building caches that
provides support for tiered memory [14]. Kernel-based sys-
tems would require adopting an experimental kernel, which
was not an option in a production deployment. CacheLib
source became open on September 2, 2021 [3]; building upon
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it is one alternative we may consider in the future, but ac-
cording to the authors, CacheLib is not the best option for
building a database’s internal page cache, and so it could not
be used as the substrate for RocksDB’s page cache (see [14],
Section 6 and discussion in §5). Thus, for our current design
we decided to use a stand-alone block cache, as it avoids the
aforementioned problems, is simple to integrate in the exist-
ing storage engine and can be easily ported to other key-value
stores.

NVCache sits next to the block manager – the code respon-
sible for reading/writing the data from/to disk (see Fig. 3).
Read path: If the DRAM cache cannot locate searched-for
data, it issues a read to the block manager 1 . The block man-

ager checks if the block is present in NVCache 2 , accessing

it from NVCache if it is 3 and reading it from disk if it is not

4 . It then transforms the block into a page, decrypting and
decompressing it if needed, and hands it over to the DRAM
cache 5 . If the block is not present in NVCache, NVCache
has the discretion to admit it after the block manager has
read it from disk 6 . NVCache stores the blocks in the same
format as they are stored on disk: compressed/encrypted if
those configuration options were chosen. This is a feature,
as storing compressed blocks increases NVRAM effective
capacity.

Write path: The write path is not symmetrical to the
read path, because AnonStorageEngine does not modify disk
blocks in place. Updates are written into in-memory specific
data structures, and then formatted into blocks and written
back to disk during a process called reconciliation. Reconcil-
iation may occur when the DRAM cache evicts pages or as
part of a database checkpoint. Reconciliation always writes
a new page 7 , which the block manager turns into a new

block. When the block manager writes a new block 8 , it

notifies NVCache 9 ; NVCache has the discretion to admit
it. Obsolete blocks are eventually freed, at which time the
block manager instructs NVCache to invalidate cached copies

of the freed blocks 10 .

Within a broader context of multi-tier caching systems,
NVCache adopts an independent design (see §2). This is a nat-
ural consequence of our decision to cache blocks, as opposed
to pages. The kernel buffer cache also caches blocks, so there
is an opportunity for a cooperative design integrated with
the kernel: we did not pursue this avenue, because adopting
a custom kernel would not be practical in customer deploy-
ments. There are off-the-shelf NVRAM caching solutions
implemented in the kernel: device mapper write cache [4]
and OpenCAS [7]. We describe them, evaluate OpenCAS (the
more advanced of the two) and present the results in §4.

We experimented in the middle ground between an inde-
pendent and a co-operative design, where the DRAM cache in-
forms the NVCache on evicting a clean page (so the NVCache

could bump its priority) or informs NVCache about the reason
for writing a dirty block (e.g., because of eviction or a check-
point). Using this information did not improve NVCache ef-
fectiveness, and keeping track of it introduced overhead, so we
retained a purely independent design. As a result, NVCache
communicates with the block manager via a narrow API, al-
lowing its codebase to evolve independently of the rest of the
system.

Internally, NVCache is organized as a hash table with a
fixed number of buckets. Upon collision, blocks mapping
to the same bucket are chained in a linked list. A bucket is
protected with a spinlock, but our measurements showed that
the rate of collisions and the synchronization overhead were
negligible (with 32K buckets for a 180GB NVCache). We
use PMDK’s [9] allocator (based on jemalloc) to allocate
NVRAM on admitting new blocks. NVCache metadata is in
DRAM, but PMDK’s jemalloc metadata is in the NVRAM.
NVCache does not use NVRAM’s persistent nature: upon
exit it loses cached data. This decision simplified our design
substantially, as we do not need to deal with crash consistency.
The downside is that we pay the cost of re-warming the cache
upon restart, and so we may revise our design in the future.

When NVCache runs out of space it cannot admit new
blocks. Eviction is needed to purge blocks less likely to be
used in order to make space for new ones. We use a simple
LFRU eviction policy [26]. During eviction it targets blocks
that were not reused within a fixed time window and evicts
the least frequently used among those. Tracking of the LRU
and LFU blocks is approximated so that there is no need to
maintain lists. There is an eviction thread that wakes up once
a second and scans the cache for eviction candidates.

3.2 NVCache Admission Policy Design

The NVCache admission policy is rooted in experimental
data; we therefore present the details of our experimental
system and the workloads prior to exploring its design.

3.2.1 Experimental system

System: Our system is a Lenovo ThinkSystem SR360 built
with two Intel Xeon Gold 5218 processors, each having 16
hyper-threaded cores.

Memory: There are two Optane NVRAM modules,
126GB each, for a total capacity of 252GB. The modules
are placed in separate sockets as per manufacturer recommen-
dation. There is 196GB of DRAM; we modulate the amount
available for experiments either via software (by creating
a large file in ramfs) or hardware (by physically removing
DRAM) in cases where the experiments demand this. We
used workloads with a variety of database sizes to study con-
ditions when the working set fits into NVRAM and when it
exceeds its capacity. With a total 252GB physical capacity
we are able to configure NVCache to hold at most 180GB of
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Figure 3: Interaction of NVCache with the rest of the storage engine.

data. The metadata overhead of NVCache structures is kept
in DRAM (and in any case it is small – a couple of gigabytes),
but the PMDK metadata, kept in the NVRAM, takes a substan-
tial amount of space; 180GB NVCache size was the largest
that we could use without experiencing out-of-memory errors
from the PMDK’s allocator.

Disk: We use Intel Optane P4800X SSD, built with the
same physical media as NVRAM DIMMs, but packaged as
an SSD on the PCIe bus. This SSD provides up to 2.5GB/s
sequential read bandwidth and up to 2.2GB/s sequential write
bandwidth.

3.2.2 Workloads

While for the final evaluation (§4) we used the widely adopted
YCSB [10, 20], during the design process we used our in-
house benchmarks. The in-house benchmarks are configura-
tion files for a AnonStorageEngine-provided workload gen-
erator application, specifying parameters such as the number
of records in the database, the sizes and distributions of keys
and values, the mix of operations (read, update, insert, modify,
scan), the number of threads, whether or not logging and trans-
actions are enabled, the size of the DRAM cache, the total
running time, etc. The benchmarks are designed to either em-
ulate customer workloads or to stress a particular feature (e.g.,
checkpoints, eviction). When presenting the throughput for a
benchmark we break it down by operation type: for example,
if the benchmark bm performs a mix of reads and updates, we
would report the throughput as bm.read and bm.update.

The workloads fall into two categories: (1) those that do
not stand to benefit from NVCache (e.g., they use small data
sets fitting entirely in DRAM, and/or they perform mostly
writes) and (2) those that do (large data sets, read-dominant).
We initially focus on benchmarks in the first category, in
particular those with small data sets. The database pages are
cached in the engine’s DRAM cache, and its blocks – in the

kernel buffer cache as they are read from disk4. So even if
the DRAM cache is configured to be much smaller than the
dataset size, the OS buffer cache would comfortably fit blocks
of small workloads. Since NVRAM caching cannot benefit
these workloads, they make for an easy demonstration of the
implementation overhead and are excellent workloads for
exploring how to minimize it.

3.2.3 Lessons learned

Our design rests on the three lessons that we learned in the pro-
cess: (1) Bypass NVRAM for small workloads, (2) Throttle
the admission rate, and (3) NVRAM cache benefit is limited
to read-dominant workloads. Lesson #2 embodies our main
contribution; the others, while less novel, were also crucial
for building a well-performing cache.

Lesson #1: Bypass NVRAM for small datasets Our first
and the most simple admission policy, alloc-read-write, was
always admitting a block to the NVCache when it is read
from or written to disk by the block manager. Figure 4 shows
the performance degradation of running with 16GB DRAM
and 180GB NVCache5 for small-sized benchmarks fitting
into DRAM that will not benefit from any additional caching.
(Eviction is disabled during these experiments to tease apart
the sources of overhead, but we re-introduce it at the end
of this section.) We observe that performance penalty under
this policy is substantial across the board, reaching 91% for
evict-btree-stress-multi.

The key observation we made when analysing the causes
of the overhead is that it is useless to cache data for small
benchmarks that comfortably fit into DRAM – the engine’s
cache or the OS buffer cache. So our first lesson is to bypass
NVCache for datasets fitting into DRAM. We call this fea-
ture small-bypass, and implement it by having the NVCache

4§3.1 explains the difference between blocks and pages.
5We ran with larger DRAM sizes too, but reached the same conclusions.
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Figure 4: Throughput degradation for workloads that do not stand to benefit from NVRAM caching. Lower numbers are better.
Eviction is disabled during these experiments to simplify the analysis of the overhead.

Figure 5: Cached blocks that were outdated and freed. Data
corresponds to the experiment in Fig. 4. These are aggregate
data for the entire workload, so we do not show the breakdown
by operation type.

monitor the aggregate size of all database files used by the
workload and abstain from admitting any blocks until the
dataset size outgrows the available DRAM. The bar labelled
small-bypass in Fig. 4 shows the overhead being significantly
reduced by this feature.

Small-bypass, in a way, approximates cooperation with the
OS buffer cache. NVCache cannot know which blocks the
buffer cache holds, but it roughly approximates this informa-
tion by juxtaposing the workload’s data size and the amount
of DRAM.

Lesson #2: Throttle the admission rate The small-bypass
feature all but eliminated the overhead for some workloads,
but made only a small improvement for others. To show
why, Figure 5 presents the number of blocks removed from
NVCache because they were outdated and freed by the block
manager as a percent of all admitted blocks. We observe that

the benchmarks whose overhead is still substantial after the in-
troduction of small-bypass are those overwrite many existing
blocks.

When an application generates new data, either by inserting
new key-value pairs or updating the old ones, the block man-
ager generates new data blocks. The blocks containing old
invalid data are eventually freed by the block manager and are
removed from NVCache. Removing a block from NVCache
involves freeing its associated memory in NVRAM, and since
the PMDK allocator keeps its metadata in NVRAM, freeing
a block generates writes into NVRAM. Moreover, remov-
ing old blocks creates space for new blocks, and NVCache
eagerly admits data in the freed space. That also generates
writes. As we showed in §2 writes disproportionately affect
the throughput of reads, i.e., of cache lookups.

One could simply disable the cache for write-intensive
workloads, but even read-dominant workloads will suffer from
the interference of writes if overly eager eviction makes it
possible to admit blocks at a high rate. Admitting new blocks
generates writes, and writes will interfere with reads.

Consider data in Table 1 for the three read-dominant work-
loads from Table 2 (this table contains workloads with large
working sets, for which caching may be beneficial). Table 1
shows data for experiments with eviction configured to ea-
gerly evict unused blocks and for experiments configured to
run without any eviction at all. When the cache is full and
new blocks cannot be admitted, eager eviction frees up the
space. While admitting recently referenced blocks in favour
of those that were less recently accessed should improve the
hit rate, this also generates more writes into NVRAM, which
may diminish the rate at which we can read cached blocks.
Indeed, we see from Table 1 that even though the cache hit
rate with eager eviction is higher (as expected), the overall
throughput is substantially lower than without any eviction.
That is because the amount of cache writes produced with
eviction is substantially higher than without it, and the writes
slow down the reads.
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Eager eviction No eviction

WL ops/sec hit rate ops/sec hit rate

evict-
btree-
large

61,699 48% 162,690 44%

evict-
btree-

scan.read

97,491 45% 134,404 36%

medium-
btree-
large

62,012 48% 164,644 44%

Table 1: Throughput of read-dominant workloads suffers
substantially with aggressive eviction despite it producing
a higher cache hit rate. Aggressive eviction generates many
writes that hurt the throughput of cache lookups (reads).

The question we then ask is: how to balance the rate of
block admission and removal, which generate writes, with
the rate of cache lookups, which produce reads? To address
it, we introduce the overhead bypass ratio (OBP):

OBP = blocks_inserted+blocks_removed
blocks_looked_up

Intuitively, the quantity in the numerator captures the cost
of using the cache: the write-generating insertions and re-
movals. The quantity in the denominator captures the benefit:
cache lookups. OBP thus expresses the balance between the
cost and benefit of using the cache; we experimentally de-
termined that a target ratio of 10% works best, but settings
between 5% and 30% were also acceptable. If OBP were to
be ported and tuned for different hardware, the thresholds
would be adjusted according to the degree to which concur-
rent writes affect the reads. E.g., on hardware where writes
have a smaller effect on the performance of reads, acceptable
OBP thresholds would be higher.

NVCache continuously updates OBP and abstains from
admitting or evicting cache blocks if OBP exceeds its tar-
get (10%). The OBP metric proved remarkably stable across
workloads and cache sizes. We also found OBP to work
better than a simple no-write-allocate policy or OBP used
in conjunction with the no-write-allocate policy. The small-
bypass+OBP bar in Figure 4 shows that small-bypass and
OBP completely eliminate the overhead for the benchmarks
that do not stand to benefit from caching.

Lesson #3: Only read-dominant workloads benefit
While the previous sections focused on the overhead and
thus experimented with small-sized workloads that do not
stand to benefit from NVCache, here we switch to using large-
sized workloads, which teach us the third lesson: NVRAM
cache benefits only read-dominant workloads. Prior study of

Figure 6: Workloads with large datasets. 32GB DRAM and
180GB NVCache.

a custom NVRAM cache for Facebook’s RocksDB came to a
similar conclusion [25].

Table 2 shows the large-sized workloads and their charac-
teristics. The rate of operations marked with an asterisk (e.g.,
insert, update for evict-btree-scan) is kept constant by the
workload generator, and so we do not report their throughput,
because it is largely insensitive to the system configuration.
The data size reported in the second column is the on-disk
size of the database reported at the end of the run. The in-
termediate database size may be much larger at points when
many new blocks were written to disk, but the outdated ones
were not yet freed. Column six reports the total amount of
data written to SSD during the run. This amount is non-zero
even for read-only workloads, because it includes the data
written to populate the database prior to the measured bench-
mark run. Although NVCache is enabled during the populate
phase, it hardly admits any blocks, because OBP throttles
the admission rate during this write-only phase. So when the
measured run begins, NVCache is empty; it warms up during
the measured run. All benchmarks run for 60 minutes, with
the exception of 500m-btree-50r50u, which runs for 120.

Figure 6 presents the throughput of large workloads with
32GB DRAM and 180GB of NVCache. (Data with other
memory sizes leads to similar conclusions, so we omit it.)

Read-intensive workloads benefit from NVCache substan-
tially, running over 3× faster with the cache than without
it (e.g., evict-btree-scan,read). But even a small proportion
of writes substantially limits performance potential: evict-
btree-stress-multi performs 20% of write operations, but the
performance boost it gets from NVCache is only 12%.

Write-intensive workloads do not benefit from NVCache,
nor would they benefit from any sort of block caching, be-
cause the churn that they generate, continuously adding and
removing blocks, makes most of the cache content outdated.
Table 2 shows the NVCache hit ratio and the fraction of re-
moved blocks relative to those inserted. The data tells us two
things: (1) workloads that don’t benefit from the cache have a
very low hit ratio, (2) the low hit ratio is likely because they
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Workload Op mix
(threads),
data size

DRAM cache
size

NVCache hit
ratio

Removed /
inserted ratio

Amount of
data written

to SSD

Amount of
data admitted

to cache

500m-btree-
50r50u

50% read, 50%
update (20),

163GB

28GB 6% 98% 2190GB 191GB

chkpt-stress-
lg

100% update
(6), 134GB

28GB 2% 94% 780GB 36GB

evict-bt-
stress-multi-

lg

80% read, 20%
update (100),

250GB

1GB 20% 94% 1740GB 424GB

evict-btree-
large

100% read
(16), 120GB

28GB 97% 0% 120GB 115GB

evict-btree-
scan

95% read, 4%
insert*, 1%

update* (430),
250GB

28GB 97% 47% 400GB 300GB

medium-
btree-large

100% read
(16), 120GB

28GB 97% 0% 120GB 115GB

overflow-
130k-lg

50% read, 50%
update (20),

253GB

21GB 6% 95% 2000GB 127GB

update-chkpt-
btree-lg

90% insert, 5%
read, 5%

update (5),
185GB

25GB 6% 95% 1720 GB 137GB

update-delta-
mix1-lg

100% updates
(6), 125GB

20GB 2% 98% 2000GB 93GB

update-grow-
stress-lg

96% update,
4% inserts*
(5), 190GB

20GB 2% 97% 2100GB 98GB

Table 2: Properties of ‘large’ workloads.

remove most of the blocks they insert. They write terabytes
of data throughout the run (Column 6), even though their
database size at the end of the run is no larger than a couple
hundred gigabytes (Column 2), overwriting most of the data
that they generate.

These data suggest that admitting zero blocks for write-
dominant workloads would be the most practical strategy,
but since the degree of write-intensity is not always known
a priori, we rely on the OBP feature to limit the damage.
As Figure 6 shows, OBP effectively prevents performance
overhead for write-dominant workloads, and columns 6 and
7 of Table 2 show that OBP filters the majority of the write
traffic to NVRAM.

As we explained earlier, AnonStorageEngine does not up-
date existing blocks in place, so a write-dominant workload
will most certainly invalidate old blocks. A storage engine
that does update data in-place may be less sensitive to the
phenomenon described in this section. However, given a lim-

ited write throughput of Optane NVRAM and given that the
RocksDB study [25] reached a similar conclusion, we expect
the lesson learned here to be broadly applicable.

3.2.4 Summary

We presented three lessons in design of caches residing in
Optane NVRAM:

1. Detect workloads that fit into the OS buffer cache and
do not admit their blocks.

2. Admitting blocks into Optane NVRAM produces writes,
which slow down the reads, i.e., cache lookups. The
admission policy must balance the cost of admitting data
into the cache against the benefit of using it later.

3. Optane NVRAM caches benefit read-dominant work-
loads. For write-dominant workloads, the admission pol-
icy must minimize the number of admitted blocks.
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Our admission policy uses the small-bypass feature to em-
body the first lesson, and the OBP feature to embody the
second and third.

4 Evaluation

We evaluate NVCache using the YCSB benchmarks [10, 20].
We tuned the algorithms and parameters of the NVCache us-
ing only our in-house benchmarks (a “training set”, to use an
analogy from statistical modeling), and performed no addi-
tional tuning during this final evaluation phase, using YCSB
as the “test set”. We ran experiments on the system described
in §3.2.1, varying the amount of DRAM and NVRAM. Pa-
rameters of the YCSB benchmarks are shown in Table 36. The
DRAM cache size was set to half of the available DRAM7,
but capped at 40GB.

Workload Op mix, threads Dataset

YCSB-A 50% read, 50% update, 20 130GB
YCSB-B 50% read, 50% update, 20 194GB
YCSB-C 100% read, 20 259GB
YCSB-D 95% read, 5% insert, 100 219GB
YCSB-E 95% scan, 5% insert, 20 210GB

Table 3: YCSB characteristics

Our evaluation asks two questions:

1. How does NVCache compare to off-the-shelf solutions
pursuing similar goals?

2. What is the effect of using an NVRAM cache on
performance-per-$?

4.1 Comparison with off-the-shelf solutions
4.1.1 Baselines used for comparison

We compare with two solutions that permit using NVRAM
as an extensions of DRAM, available in off-the shelf Optane
systems: Intel Memory Mode (MM) [5] and Intel Open Cache
Acceleration Software (OpenCAS) [5]. For potential future
deployment of NVRAM in the field, it was important for us
that these alternatives were available in standard Linux servers
and did not require custom unsupported kernels.

Intel Memory Mode is a hardware configuration that
presents Optane NVRAM to the rest of the system as reg-
ular volatile memory, and uses DRAM transparently as its
cache, with data transferred between the two in units of cache

6We did not include YCSB-F: it is modify-heavy, and modify operations
in our storage engine were designed to trade performance for smaller cache
footprint and smaller log records. Therefore, the overall throughput in modify
operations was very low and insensitive to memory configurations.

7The engine’s cache and the OS buffer cache share the available DRAM,
so this setting gives each an equal share.

lines. This is an attractive alternative, because it permits using
NVRAM as an extension to DRAM without requiring any
code changes, and makes it available for all data structures,
in user space and kernel alike. In contrast, NVCache makes
NVRAM available only for caching database file blocks.

Memory Mode can be enabled only in specific hardware
configurations ( [6], Table 17). We were able to successfully
configure MM such that each NVDIMM was “paired” with a
DRAM DIMM, meaning that it must be placed in the unused
slot of the same channel of the same iMC (integrated mem-
ory controller) as the NVDIMM. Using additional DRAM
DIMMs that were not paired with NVDIMMs produced con-
figuration errors on our system, so we could only use the
configuration with two NVDIMMs and two DRAM DIMMs.
Our DRAM DIMMs were 16GB in size, so that restricted us
to a configuration with 32GB of DRAM. Fortunately, MM
could be configured to use all or part of the NVRAM, so we
were able to vary the amount of NVRAM in the experiments.

In MM, the amount of total system memory is reported
to be the same as the size of the NVRAM dedicated to MM.
Since the AnonStorageEngine’s DRAM cache is always con-
figured to be half the size of the physical DRAM (see the
beginning of §4) for equitable comparisons other systems,
the kernel buffer cache will dynamically expand to use more
plentiful system memory as the NVRAM size grows. So in
essence our configuration with MM uses NVRAM in the
same way as NVCache does (for caching file blocks), but
via an off-the-shelf hardware solution and without any code
changes. An alternative would be to increase the size of the
engine’s DRAM cache as NVRAM grows; exploring this op-
tion in-depth was difficult due to space constraints, and thus
was deemed outside the scope of the current work.

OpenCAS is an open-source software project supported by
Intel that allows using a fast block device as a cache for a
slow block device, and it can be configured so that NVRAM
acts as a block cache for the SSD – same idea as NVCache.
OpenCAS can be configured in several modes [8]: write-
back, write-through, write-around, pass-through (disabled)
and write-only (allocate blocks only on write). Based on the
lessons learned during admission policy design, write-around
seemed the most appropriate configuration option: “In write-
around mode, the caching software writes data to the flash
device if and only if that block already exists in the cache
and [...] further optimizes the cache to avoid cache pollution
in cases where data is written and not often subsequently
re-read.” [8]

Alternative baselines not pursued: Other alternatives to
compare would be device mapper write cache (dm-wc) [4]
and First Responder [30] – both OS-level block caches, and
tiered memory systems, such as Nimble [35] and HeMem [29].
We considered comparing to dm-wc (the source code for First
Responder is not available at the time of the writing), but upon
analysing its properties we discovered that dm-wc admits
blocks only on writes and does not throttle the admission

9



rate, which runs counter to the lessons learned in our design.
For example, dm-wc would admit zero blocks for read-only
workloads, depriving of NVRAM caching the very workloads
that benefit the most. OpenCAS, in contrast, can be configured
with flexible admission policies, superseding dm-wc in that
regard.

Nimble [35] and HeMem [29] are tiered memory systems
that transparently move application pages between DRAM
and NVRAM depending on how the pages are accessed. We
did not compare against them, because they both required
custom kernels, which would be impractical for us to adopt
in the field. Furthermore, HeMem uses the NVRAM tier only
for large allocations exceeding 1GB (HeMem specifically
targets “big data” systems), so it would not use NVRAM for
our engine’s pages or blocks, whose size is on the order of a
dozen kilobytes.

4.1.2 Results

Figure 7 shows the throughput of the memory mode (MM),
OpenCAS and NVCache with 32GB DRAM and 64GB,
128GB and 252GB of NVRAM relative to using no NVRAM
at all. We make the following observations:

Observation 1: OpenCAS cache derives no performance
benefit from NVRAM. This occurs, we conjecture, because
it does not throttle the admission rate. OpenCAS delivers
similar or better read hit rate as the NVCache (numbers not
shown), but also makes two orders of magnitude more writes
to NVRAM. With these observations, our best explanation is
that failing to throttle the admission rate to NVRAM is the
main reason why OpenCAS fails to perform.

Observation 2: Memory mode outperforms or performs
comparably to NVCache when NVRAM is ample, as shown
in Figure 7(c). The amount of NVRAM available for the
experiments in Figure 7(c) is 252GB; given the dataset sizes
in Table 3 we observe that they, for the most part, comfortably
fit into the NVRAM. System memory is reported to be 252GB
in Memory Mode, and as a result the kernel buffer cache has
ample capacity to expand into the NVRAM space, providing
no competition for the engine’s DRAM cache. By contrast,
with NVCache the amount of system memory is 32GB, and
the kernel buffer cache competes with the engine’s DRAM
cache, swapping some of its pages to disk. At the same time
we observe that for NVCache the marginal utility of additional
NVRAM is small after it reaches 128GB. E.g., increasing the
available NVRAM from 64GB to 128GB, NVCache hit rate
grows by about 20%, but going from 128GB to 252GB, it
grows by only another 5%.

On the other hand, we observe that Memory Mode hurts
performance of the write-intensive YCSB-A (by about 30%),
while NVCache keeps it unchanged.

Observation 3: When the dataset size exceeds NVRAM
capacity, NVCache provides substantially better performance
than Memory Mode. As shown in Fig. 7(a), NVCache outper-

forms the memory mode by between 30% (for YCSB-B) and
169% (YCSB-C). Further, the memory mode hurts YCSB-A’s
update throughput by about 18% relative to the DRAM-only
baseline, while NVCache doesn’t. We conclude that a bespoke
cache can be superior to Memory Mode when the dataset size
substantially exceeds the available NVRAM.

4.1.3 Combining Memory Mode and NVCache

We also experimented with configurations where part of the
NVRAM is dedicated to MM and the remainder is used in
AppDirect mode for NVCache, reasoning that we could size
NVCache such that its marginal utility is highest ( 128GB),
and the rest of the NVRAM could be used as MM’s system
memory for the benefit of other data structures. Unfortunately,
we observed orders of magnitude worse throughput than with
either MM or NVCache alone, and did not pursue this avenue
further.

4.2 Performance vs. cost
In this experiment we take a fixed memory budget of 96GB
and vary the fraction used by DRAM and NVRAM as shown
in Table 48. We perform the experiments in this section using
only NVCache, as we are unable to vary the amount of DRAM
used in MM (see §4.1.1) and OpenCAS proved to be not
competitive.

NVRAM DRAM Relative cost

0GB 96GB 1
16GB 80GB 0.90
32GB 64GB 0.79
48GB 48GB 0.69
64GB 32GB 0.59

Table 4: NVRAM and DRAM amounts and the cost of all
system memory relative to an all-DRAM setup.

We use the NVRAM/DRAM per-byte cost ratio of 0.38,
same as in a recent study with Optane memory [25]. As the
amount of NVRAM increases and the amount of DRAM
decreases, the total cost of system memory also decreases, as
shown in Column 3.

Figure 8(a) shows the performance of YCSB normalized
to the 96GB DRAM configuration and divided by the cost
ratio in Column 3. In other words, these are performance/$
numbers relative to the DRAM-only configuration. Positive
numbers mean that the performance decreased less than the
memory cost. Read-only or read-mostly workloads that ben-
efit from the NVCache (see cache hit ratios in Fig. 8(b))
experience a positive gain, as expected.

8We do not use the configuration with 16GB DRAM, because a scarce
DRAM amount triggered a known kernel bug in the DAX code (at
fs/inode.c:530).
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(a) 64GB NVRAM (b) 128GB NVRAM (c) 252GB NVRAM

Figure 7: YCSB throughput under memory mode, OpenCAS and NVCache relative to 32GB DRAM and zero NVRAM.

(a) Performance per $ (b) NVCache hit ratio

Figure 8: YCSB performance per dollar and NVCache hit ratio under increasing NVRAM and decreasing DRAM.

While in most cases performance predictably drops as the
amount of DRAM decreases, YCSB-C in configuration with
64GB NVRAM and 32GB DRAM actually performs better
than it does with 96GB DRAM – so we decrease the system
cost and improve performance in absolute terms. This occurs
because going beyond 32GB DRAM the utility of additional
DRAM (and a larger DRAM cache) is considerably smaller
than the loss in performance due to a smaller NVCache.

YCSB-A, whose write intensity makes it unable to benefit
from any additional caching, suffers the overall loss in terms
of performance/$, as its performance drops at a steeper rate
than the memory cost as we decrease the amount of DRAM.

4.3 Summary

Our evaluation revealed that the memory mode is a compet-
itive off-the-shelf alternative to a custom NVRAM cache
when the amount of NVRAM is ample, but when it is scarce
a custom cache solution such as NVCache will deliver bet-
ter performance. OpenCAS is not competitive with either
NVCache or the memory mode.

NVRAM is a cost-effective method of reducing memory
cost while balancing the impact on performance for read-
dominant workloads, where in some cases we can both re-
duce cost and improve performance as DRAM is swapped in
favour of NVRAM. For write-intensive workloads, however,

replacing part of DRAM with NVRAM is not a cost-effective
option.

5 Related Work

The most similar and recent counterpart to our study is a
volatile Optane-resident cache for Facebook’s RocksDB [25].
That work takes RocksDB’s DRAM block cache and turns it
into a two-tiered cache of DRAM and NVRAM, making it
similar to tiered memory systems. Like other tiered memory
systems, it addresses the question of how to split the cached
data between the DRAM and the NVRAM tiers. We present
a different design, that uses a stand-alone block cache in-
terposed between the DRAM cache and the block devices.
Although the RocksDB study also uses Optane NVRAM as
the cache media, it does not raise awareness about the detri-
mental impact of concurrent writes on reads – a new finding
we share – and does not factor it into the admission policy.

HeuristicDB [37] is a cooperative block layer cache that
uses a fast Optane SSD as a caching tier in front of a slower
drive. HeuristicDB admits all blocks read from and written
to the block device, except those part of sequential access
pattern. While this generous admission policy might work for
Optane SSDs, we demonstrated that it is unacceptably costly
for Optane NVRAM.

MyNVM is another key-value store based on RocksDB
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that uses Optane SSD as the medium for an internal block
cache [22]. Similarly to NVCache, MyNVM caters its admis-
sion policy to the properties of the Optane device, but pursues
different goals: (1) to extend its endurance MyNVM admits
only carefully selected keys, and (2) to maximize its band-
width it accumulates keys into relatively large 128KB blocks
before writing them to the device. While we did not focus on
improving endurance, write throttling performed in NVCache
via the overhead bypass parameter (OBP – see §3.2.3) should
increase it. The second goal is potentially applicable to our
NVRAM device too, but prior experiments ( [36], Fig. 5)
showed that writing into Optane NVRAM blocks larger than
those that we already write (e.g., 16KB+) does not improve
its bandwidth.

Like MyNVM, Facebook’s CacheLib caters to the proper-
ties of (flash) SSDs by limiting the admission rate to promote
device endurance [14]. The throttling heuristic is rather sim-
ple; it is a configurable probability p that determines the
overall rate of admission. As far as we know, p is not dy-
namically adjusted based on the observed rates of writes and
lookups, so it could not be used in place of NVCache’s OBP.

The work by Arulraj et al. [13] establishes a broad frame-
work for reasoning about multi-tiered caching systems com-
prised of DRAM, persistent memory and SSDs. The authors
propose an algorithm for data placement that dynamically
tunes the following probabilities: the probability of bypass-
ing DRAM on reads and writes (data being read/written di-
rectly from/to NVRAM) and the probability of bypassing the
NVRAM on reads and writes. Bypassing DRAM is not appli-
cable in our engine, because DRAM stores data in a different
format than NVRAM, but bypassing NVRAM is the same
question we grappled with during the design of our admission
policy. Arulraj’s work uses simulated annealing to dynami-
cally adapt these probabilities, while we use a dynamically
computed OBP threshold. Their evaluation was performed
on a simulator, while we used real hardware, which revealed
concrete limitations and influenced our design.

Estro et al. explored the relationship of performance and
cost and the effects of different cache settings (such as write-
through vs. writeback) in multi-tier caching configurations on
real hardware [23]. Performing similar analysis would be a
natural extension of our work, but can only be done after un-
derstanding the idiosyncrasies of cache design using recently
adopted memory technology, contributed by our study.

The design of Orthus [34] was driven by an observation
similar to ours: a seemingly faster device (Optane SSD, in
their case) outperforms a slower device (a flash-based SSD)
in general, but lags behind it under high concurrency. Orthus
embraces a hybrid design: initially, a faster device acts as a
cache for a slower device, admitting all blocks until a desired
hit rate is accomplished. Then Orthus switches to a ‘’tiered
mode”, where the load is distributed among both devices to
maximize the overall throughput. Our OBP feature accom-
plishes a somewhat similar effect when it begins throttling

the admission rate to NVCache, and as a result more reads
are being sent to the storage device over time. In contrast
to Orthus, NVCache throttles the admission rate based on
the observed cost/benefit metric, and not as a consequence of
achieving a certain hit rate. In fact, we observed that it may
be beneficial for overall performance to throttle the admission
rate at the expense of the reduced hit rate.

Multi-tiered memory systems dealt primarily with the
policies for selecting the right tier for a memory page,
and (to that end) efficiently tracking page access patterns
[11,12,21,24,29,31–33,35]. Our decision to make NVCache
independent from the DRAM cache makes these techniques
largely complementary. As an alternative design, a tiered
memory system could be used in place of NVCache by provid-
ing a larger pool of memory into which the engine’s DRAM
cache could transparently expand. Exploring this alternative
was left for future work, since generic tiered memory systems
known to us, e.g., Nimble [35] and HeMem [29] required cus-
tom kernels that were impractical do adopt in the field. Cache-
Lib [3, 14] is a library for development of custom caches that
span tiers, but as far as we understand it caches data as items
whose raw memory can be traversed by the application, and
so it would face the same need to fix pointers described in §3.1
if data structures with pointers to raw memory of other items
were moved between tiers. Intel Memory Mode is a tiered
memory system implemented in hardware, and we compared
it against NVCache in §4.

6 Conclusion

Although it was well known that Optane NVRAM delivers
limited write throughput, it was not known that writes dispro-
portionately affect the throughput of reads. We discovered
that in the presence of a single writer thread, the throughput of
reads drops almost by a factor of 4×. In contrast, with DRAM
used in the same experiment the impact on read throughput
was only 18%. This discovery led us to propose a new admis-
sion policy for Optane-resident caches. Our policy throttles
the rate of writes to the cache (generated by the admission of
new data, removal of invalid data and eviction), with the rate
of reads, i.e., cache lookups. The metric capturing this prin-
ciple, the Overhead Bypass Threshold, is generic and can be
applied in any cache residing on hardware with similar proper-
ties. Our implementation outperforms an off-the-shelf cache
from OpenCAS across the board, and the hardware tiered
memory system (Intel Memory Mode) in all cases where the
dataset size exceeds the amount of NVRAM.

7 Availability

The AnonStorageEngine source code, including NVCache, is
available as open source software. Its location will be posted
as soon as anonymity restrictions are lifted.
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