Optane Memory As a Volatile Extension of DRAM and its Impact on Performance
of WiredTiger

Alexandra Fedorova

1,2

'MongoDB
2University of British Columbia

1 Introduction

Intel® Optane™ DC Persistent Memory can be used as a
volatile extension of DRAM. This document compares two
methods of using NVRAM as an extension of DRAM and
evaluates their impact on WiredTiger’s performance.

The first method we studiy is Optane Memory Mode. Mem-
ory Mode presents Optane NVRAM to the rest of the system
as regular volatile memory, and uses DRAM transparently
as its cache, with data transferred between the two in units
of cache lines. Using the Memory Mode creates the illusion
of a larger system memory, and this is an attractive design,
because it permits using NVRAM as an extension to DRAM
without requiring any code changes.

The second method we study is NVCache — our custom
NVRAM block cache, implemented as a component inside
WiredTiger. NVCache caches file blocks as they are read
from or written to the file system. Like MM, NVCache does
not use the persistent properties of Optane NVRAM.

2 WiredTiger NVCache

NVCache is a component of WiredTiger that caches disk
blocks in NVRAM. A separate document describes its de-
tailed architecture and motivates its features; here is provide
a broad overview.

NVCache caches blocks read from or written to disk and
sits underneath the WiredTiger page cache and next to the
block manager — the code responsible for reading/writing
the data from/to disk (see Fig. 1). Read path: If the DRAM
cache cannot locate searched-for data, it issues a read to the
block manager @ The block manager checks if the block is
present in NVCache @, accessing it from NVCache if it is
@ and reading it from disk if it is not @ It then transforms
the block into a page, decrypting and decompressing it if

needed, and hands it over to the DRAM cache @ If the
block is not present in NVCache, NVCache has the discretion

to admit it after the block manager has read it from disk @

NVCache stores the blocks in the same format as they are
stored on disk: compressed/encrypted if those configuration
options were chosen. This is a feature, as storing compressed
blocks increases NVRAM effective capacity.

Write path: The write path is not symmetrical to the read
path, because WiredTiger does not modify disk blocks in
place. Updates are written into in-memory specific data struc-
tures, and then formatted into blocks and written back to
disk during a process called reconciliation. Reconciliation
may occur when the DRAM cache evicts pages or as part of
a database checkpoint. Reconciliation always writes a new

page @ which the block manager turns into a new block.
When the block manager writes a new block , it notifies

NVCache @; NVCache has the discretion to admit it. Ob-
solete blocks are eventually freed, at which time the block
manager instructs NVCache to invalidate cached copies of

the freed blocks .

When NVCache runs out of space it cannot admit new
blocks. Eviction is needed to purge blocks less likely to be
used in order to make space for new ones. We use a simple
LFRU eviction policy [4]. During eviction it targets blocks
that were not reused within a fixed time window and evicts
the least frequently used among those. Tracking of the LRU
and LFU blocks is approximated so that there is no need to
maintain lists. There is an eviction thread that wakes up once
a second and scans the cache for eviction candidates.

A key feature of NVCache distinguishing it from similar
existing systems is its admission policy — the policy decid-
ing when to admit blocks into cache. In our prior work we
discovered that the presence of writes to Optane NVRAM
disproportionately affects the throughput of reads. In other
words, writing lots of data into Optane NVRAM will cause
reads to be very slow. Whenever NVCache admits a new
block or evicts an existing one it generates writes into the
Optane memory: and producing too many of those writes
will make reads, i.e., cache lookups, very slow. To prevent
this situation from occurring, NVCache throttles the amount
of cache admissions and the rate of eviction in accordance



@ request block

@ request data
@ return page

E | 2 write page

DRAM
cache

Block
manager

write
block

Block device

@return block on a hit

notify about a new block read
—-—

R OL

h

NVCache

notify about a new block written

invalidate e

— message
- data transfer

== =p message and potential data transfer

Figure 1: Interaction of NVCache with the rest of the storage engine.

aligning them with the frequency of lookup. Detailed design
of this policy, experiments and motivating data are provided
in our paper describing the NVCache.

2.1 NVCache vs. MM

NVCache and Optane Memory Mode differ in the following
ways:

1. NVCache is a software component that is part of
WiredTiger. Using MM is transparent and does not re-
quire any additional source code.

. MM provides a transparent extension of system volatile
memory, and it can be used to enable a larger WiredTiger
page cache or to provide additional space for the kernel
buffer cache expansion. On the other hand, NVCache
caches disk blocks only, and currently cannot be used to
host WiredTiger page cache.

3 Experimental methodology

3.0.1 Experimental system

System: Our system is a Lenovo ThinkSystem SR360 built
with two Intel Xeon Gold 5218 processors, each having 16
hyper-threaded cores.

Memory: There are two Optane NVRAM modules,
126GB each, for a total capacity of 252GB. The modules
are placed in separate sockets as per manufacturer recommen-
dation.

Memory Mode can be enabled only in specific hardware
configurations ( [1], Table 17). We were able to successfully
configure MM such that each NVDIMM was “paired” with a
DRAM DIMM, meaning that it must be placed in the unused
slot of the same channel of the same iMC (integrated mem-
ory controller) as the NVDIMM. Using additional DRAM

DIMMs that were not paired with NVDIMMs produced con-
figuration errors on our system, so we could only use the
configuration with two NVDIMMSs and two DRAM DIMM:s.
Our DRAM DIMMs were 16GB in size, so that restricted us
to a configuration with 32GB of DRAM. Fortunately, MM
could be configured to use all or part of the NVRAM, so we
were able to vary the amount of NVRAM in the experiments.

Disk: We use Intel Optane P4800X SSD, built with the
same physical media as NVRAM DIMMs, but packaged as
an SSD on the PCle bus. This SSD provides up to 2.5GB/s
sequential read bandwidth and up to 2.2GB/s sequential write
bandwidth.

3.1 Workoads

We evaluate NVCache using the YCSB benchmarks [2, 3],
whose parameters are shown in Table 1'.

Workload | Op mix, threads Dataset |
YCSB-A 50% read, 50% update, 20 130GB
YCSB-B 50% read, 50% update, 20 194GB
YCSB-C 100% read, 20 259GB
YCSB-D 95% read, 5% insert, 100 219GB
YCSB-E 95% scan, 5% insert, 20 210GB

Table 1: YCSB characteristics

3.1.1 Experimental goals

Memory mode provides a transparent extension to system
memory. WiredTiger can benefit from additional system mem-
ory in two ways: (1) By using a larger page cache, (2) by keep-

"We did not include YCSB-F: it is modify-heavy, and modify operations
in our storage engine were designed to trade performance for smaller cache
footprint and smaller log records. Therefore, the overall throughput in modify
operations was very low and insensitive to memory configurations.



W NVCache . MM.16GB

[ MM.32GB

I MM.16GB
[ MM.32GB

B MM.40GB

1 MM.40GB
W MM.80GB

W NVCache . MM.16GB

[ MM.32GB

] MM.40GB
[ MM.BOGB

W MM.160GB
W NVCache

Normalized throughput
Normalized throughput

—
——

N w IS

Normalized throughput

—=
—=
=4
=
=

°

YCSB-B.read |
YCSB-B.update |
YCSB-C.read
YCSB-D.insert -
YCSB-D.read -
YCSB-E.insert |
YCSB-E.read |
YCSB-A.read 4
YCSB-B.read |

YCSB-A.update |

32GB.DRAM-64GB.NVRAM

(a) 64GB NVRAM

YCSB-B.update |

YCSB-C.read

32GB.DRAM-128GB.NVRAM

(b) 128GB NVRAM

YCSB-D.insert |
YCSB-D.read |
YCSB-E.insert |
YCSB-E.read |
YCSB-A.read |
YCSB-B.read |
YCsB-B.update |
YCSB-C.read |
YCSB-D.insert |
YCSB-D.read -{
YCSB-E.insert {
YCSB-E.read |

YCSB-A.update |

32GB.DRAM-252GB.NVRAM

(c) 252GB NVRAM

Figure 2: YCSB throughput in memory mode and NVCache. Each bar labeled MM-NGB shows a configuration in memory mode
with varying sizes of the engine’s page cache. The NVCache configuration uses the 16GB DRAM page cache and the NVRAM

block cache size of 64GB, 128GB and 180GB respectively.

ing the page cache of a modest size so that the kernel buffer
cache, which caches the engine’s file blocks, can expand into
a larger system memory. To that end, we vary two experi-
mental parameters: the size of the available NVRAM and the
size of the WiredTiger’s page cache. For the configuration
using NVCache, we only vary the size of the NVRAM block
cache, but keep the WiredTiger’s page cache fixed, because
the amount of DRAM used in the NVCache configuration is
also fixed.

4 Experimental results

Figure 2 shows the throughput of YCSB with 32GB of DRAM
and 64GB, 128GB and 252GB of NVRAM. The NVCache
configuration uses a 16GB WiredTiger page cache, because
the amount of system RAM is fixed to 32GB. Memory Mode
allows us to expand the page cache, because the amount of
system memory grows with the available NVRAM, so we
use multiple page cache sizes in MM configurations. The
configurations using Memory Mode and a 16GB page cache
are similar to NVCache: we keep the WiredTiger page cache
the same size as in the NVCache configuration and let the
kernel buffer cache occupy the available system memory.
We make the following conclusions: when the amount
of available NVRAM is smaller than the size of the dataset
(e.g., Figure 2(a)), NVCache provides superior performance
to MM. When the amount of NVRAM approaches or exceeds
the dataset size, MM provides similar or superior performance
to NVCache. Unfortunately, as the amount of NVRAM grows,
we also observe extremely high standard deviation in Mem-
ory Mode configurations, while the standard deviation with
NVCache always remains low. We have run hundreds of
experiments with NVCache and never observed a high vari-
ability in performance. We hypothesize that performance vari-
ability in MM occurs when there is a high burst of writes sent
to the NVRAM. NVCache controls the rate of writes, so this

issue does not occur. We emphasize that this is a hypothesis,
and we don’t (yet) have any data to back it up.

5 Conclusion

In this document we compared the performance of two sys-
tems that use Intel® Optane™ DC Persistent Memory as a
volatile extension of DRAM: Memory Mode — a transparent
hardware mechanism, and NVCache — a software component
of WiredTiger that uses Optane memory for caching disk
blocks. We conclude that while Memory Mode is an attrac-
tive solution requiring no software modifications, it performs
worse than NVCache when the dataset size substantially ex-
ceeds the amount of available NVRAM. Although it performs
comparably to or better than NVCache when the dataset fits
into NVRAM, it also produces high performance variability,
whose causes are not yet known.

References
[1] Intel® Server Board S2600WF Product Fam-
ily. Technical Product Specification. https:

//www.intel.com/content/dam/support/us/
en/documents/server-products/server-boards/
S2600WF_TPS.pdf, 2021.
[2] Yahoo! Cloud Serving Benchmark, Git Repo. https:
//github.com/brianfrankcooper/YCSB, 2021.
[3] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. benchmarking cloud
serving systems with ycsb.
[4] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H.
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim.


https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB

On the Existence of a Spectrum of Policies That Sub-
sumes the Least Recently Used (LRU) and Least Fre-
quently Used (LFU) Policies. In Proceedings of the 1999
ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, SIGMET-
RICS °99, page 134-143, New York, NY, USA, 1999.
Association for Computing Machinery.



	Introduction
	WiredTiger NVCache
	NVCache vs. MM

	Experimental methodology
	Experimental system
	Workoads
	Experimental goals


	Experimental results
	Conclusion

