
MongoDB Routing Info Storage & Refresh

Optimization

Author: Tencent MongoDB team

Preface

In recent releases of MongoDB, there’s a couple optimization been made around

Refreshing Routing Info, however the performance issue caused by it wasn’t rooted out

for good that big sharded clusters would still suffer slow queries due to it.

Tencent MongoDB team have (or hope so) come up with an optimization solution to

solve the problem by utilizing Two-Dimensional Sorting & Search. With the optimization,

there’d be no latency caused by refreshing routing info, that the refreshing time cost

would remain at around 2ms regardless of the data size of the shreded cluster.

1. Background

Tencent MongoDB team has noticed unusual slow queries on many sharded clusters

out of blue while there’s no sign of any system resource shortage (CPU, RAM, I/O, etc) in

the past several years. Further looking into this symptom, the team figured out retrieving

incremental routing info would take a lot of time when total chunk number exceeds

certain threshold on shared clusters.

For instance, a sharded cluster with 250k chunks requires around 300ms to refresh

routing info; For larger clusters, like a cluster with 1 million chunks, it’d take seconds to

do the refresh, severely blocking other queries.

Other than that, refreshing routing info could consume significantly more system

resources – If a cluster has multiple sharded collections, CPU spikes will occur much

more often when refreshing routing info for multiple collections at the same time.

Below are some of the cases we found in production & testing environment.

Case 1: v4.0 Product Cluster with 250k chunks

⚫ Cluster Info

Data size: 5.5 billion docs, 1.2TB in total size;

Chunk number: 250k;

Refreshing routing info duration: 200ms for mongos, 300ms for mongod.

⚫ Related mongos logs

⚫ Thu Oct 6 11: 28: 42.556 I SH_REFR [ConfigServerCatalogCacheLoader-

85148] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|686||62d157722a3a66acadc3b7a4 to version 102961|701||62d157722

a3a66acadc3b7a4 took 190 ms

⚫ Thu Oct 6 11: 28: 44.914 I SH_REFR [ConfigServerCatalogCacheLoader-

85148] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|701||62d157722a3a66acadc3b7a4 to version 102961|704||62d157722

a3a66acadc3b7a4 took 183 ms

⚫ Thu Oct 6 11: 29: 41.923 I SH_REFR [ConfigServerCatalogCacheLoader-

85149] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|704||62d157722a3a66acadc3b7a4 to version 102961|707||62d157722

a3a66acadc3b7a4 took 194 ms

⚫ Thu Oct 6 11: 32: 02.121 I SH_REFR [ConfigServerCatalogCacheLoader-

85151] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|707||62d157722a3a66acadc3b7a4 to version 102961|723||62d157722

a3a66acadc3b7a4 took 198 ms

⚫ Related mongod logs

⚫ Thu Oct 6 11: 24: 11.358 I SH_REFR [ConfigServerCatalogCacheLoader-

191078] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|603||62d157722a3a66acadc3b7a4 to version 102961|628||62d15772

2a3a66acadc3b7a4 took 262 ms

⚫ Thu Oct 6 11: 24: 21.306 I SH_REFR [ConfigServerCatalogCacheLoader-

191078] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|628||62d157722a3a66acadc3b7a4 to version 102961|631||62d15772

2a3a66acadc3b7a4 took 285 ms

⚫ Thu Oct 6 11: 24: 45.905 I SH_REFR [ConfigServerCatalogCacheLoader-

191078] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|631||62d157722a3a66acadc3b7a4 to version 102961|634||62d15772

2a3a66acadc3b7a4 took 265 ms

⚫ Thu Oct 6 11: 25: 20.979 I SH_REFR [ConfigServerCatalogCacheLoader-

191078] Refresh for collection orderSchedule.OrderDispatchLogDetail from version 102961|634||62d157722a3a66acadc3b7a4 to version 102961|644||62d157

722a3a66acadc3b7a4 took 252 ms

Case 2: v4.2 Product Cluster with 1.5m chunks

⚫ Cluster Info

Data size: 15.5 billion docs，22.5TB in total size;

Chunk number: 1.5 million;

Refreshing routing info duration: 800ms for mongos, 1.2s for mongod.

⚫ Related mongos logs

⚫ 2022-10-05T04: 18: 41.359+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

136639] Refresh for collection wukong.actions from version 102910|1||626ba80f5fa7cb632d7bf264 to version 102910|4||626ba80f5fa7cb632d7bf264 took 788 ms

⚫ 2022-10-05T04: 18: 50.800+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

136639] Refresh for collection wukong.actions from version 102910|4||626ba80f5fa7cb632d7bf264 to version 102910|7||626ba80f5fa7cb632d7bf264 took 780 ms

⚫ 2022-10-05T04: 19: 18.546+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

136639] Refresh for collection wukong.actions from version 102910|7||626ba80f5fa7cb632d7bf264 to version 102911|1||626ba80f5fa7cb632d7bf264 took 778 ms

⚫ 2022-10-05T04: 20: 01.105+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

136640] Refresh for collection wukong.actions from version 102911|1||626ba80f5fa7cb632d7bf264 to version 102912|1||626ba80f5fa7cb632d7bf264 took 781 ms

⚫ Related mongod logs

⚫ 2022-10-06T10: 54: 49.219+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

141236] Refresh for collection wukong.actions from version 103200|584||626ba80f5fa7cb632d7bf264 to version 103200|593||626ba80f5fa7cb632d7bf264 took 10

01 ms

⚫ 2022-10-06T10: 57: 42.071+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

141237] Refresh for collection wukong.actions from version 103200|593||626ba80f5fa7cb632d7bf264 to version 103200|608||626ba80f5fa7cb632d7bf264 took 12

00 ms

⚫ 2022-10-06T11: 00: 36.781+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

141240] Refresh for collection wukong.actions from version 103200|608||626ba80f5fa7cb632d7bf264 to version 103200|623||626ba80f5fa7cb632d7bf264 took 11

46 ms

⚫ 2022-10-06T11: 03: 34.142+0800 I SH_REFR [ConfigServerCatalogCacheLoader-

141241] Refresh for collection wukong.actions from version 103200|623||626ba80f5fa7cb632d7bf264 to version 103200|632||626ba80f5fa7cb632d7bf264 took 11

29 ms

Case 3: v3.6 Product Cluster with 4.3m chunks

⚫ Cluster Info

Data size: 120 billion docs, 80TB data size in total;

Chunk number: 430 million;

Refreshing routing info duration: 4s for mongos, 4.6s for mongod.

Case 4: v5.0 Test Cluster with 2m chunks

⚫ Cluster Info

Set up a v5.0 sharded cluster with 2 million chunks -- Use “id” field as shard key,

ranging from 0 to 100,000,000, generate 2M chunks by pre-splitting chunks.

⚫ Related mongos logs

//Refreshing routing info

{"t": {"$date": "2022-10-06T17: 46: 25.479+08: 00"},"s": "I", "c": "SH_REFR", "id": 4619901, "ctx":

"CatalogCache-2","msg": "Refreshed cached collection","attr": {"namespace":

"test.test2","lookupSinceVersion": {"0": {"$timestamp": {"t": 49182,"i": 1}},"1": {"$oid":

"626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i": 6}}},"newVersion":

{"chunkVersion": {"0": {"$timestamp": {"t": 49182,"i": 1}},"1": {"$oid":

"626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i":

6}}},"forcedRefreshSequenceNum": 21,"epochDisambiguatingSequenceNum": 18},"timeInStore":

{"chunkVersion": : {"0": {"$timestamp": {"t": 49182,"i": 1}},"1": {"$oid":

"626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i":

6}},"forcedRefreshSequenceNum": 20,"epochDisambiguatingSequenceNum":

17},"durationMillis": 896}}

Case 5: v5.0 Test Cluster with 5m chunks

⚫ Cluster Info

Set up a v5.0 sharded cluster with 5 million chunks -- Use “id” field as shard key,

generate 5m chunks by pre-splitting chunks.

⚫ Related mongod logs

1. {"t":{"$date":"2022-10-17T16:15:56.209+08:00"},"s":"I", "c":"SH_REFR", "id":4619901, "ctx":"CatalogCache-

3","msg":"Refreshed cached collection","attr":{"namespace":"test.test2","lookupSinceVersion":{"0":{"$timestamp":{"t":49188,"i":1}},"

1":{"$oid":"626a663821072b82d9059209"},"2":{"$timestamp":{"t":1651140151,"i":6}}},"newVersion":{"chunkVersion":{"0":{"$timesta

mp":{"t":49189,"i":1}},"1":{"$oid":"626a663821072b82d9059209"},"2":{"$timestamp":{"t":1651140151,"i":6}}},"forcedRefreshSequen

ceNum":15,"epochDisambiguatingSequenceNum":17},"timeInStore":{"chunkVersion":{"0":{"$timestamp":{"t":49189,"i":1}},"1":{"$oid"

:"626a663821072b82d9059209"},"2":{"$timestamp":{"t":1651140151,"i":6}}},"forcedRefreshSequenceNum":15,"epochDisambiguati

ngSequenceNum":16},"durationMillis":2442}}

2. {"t":{"$date":"2022-10-

17T16:15:56.238+08:00"},"s":"I", "c":"COMMAND", "id":51803, "ctx":"conn31","msg":"Slow query","attr":{"type":"command","ns":"

test.test2","appName":"MongoDB Shell","command":{"find":"test2","filter":{"id":12},"lsid":{"id":{"$uuid":"60e64fb3-900e-4dc4-8295-

0b41f30f9782"}},"$clusterTime":{"clusterTime":{"$timestamp":{"t":1665994442,"i":1}},"signature":{"hash":{"$binary":{"base64":"AAA

AAAAAAAAAAAAAAAAAAAAAAAA=","subType":"0"}},"keyId":0}},"$db":"test"},"nShards":1,"cursorExhausted":true,"numYields":0,"

nreturned":3,"reslen":663,"readConcern":{"level":"local","provenance":"implicitDefault"},"remote":"127.0.0.1:34674","protocol":"op_

msg","durationMillis":3136}}

2. Problem Impact

Refreshing routing info happens under a lot of circumstances on mongos & mongod,

e.g. splitting & moving chunks, routing requests for read/write queries, adding/removing a

shard, etc. Efficiency of refreshing is crucial to MongoDB sharded cluster’s core

functionalities.

In production clusters, chunk numbers grow rapidly with data keeps flowing in,

resulting longer refreshing duration, which in turn caused troubles for users:

⚫ Cluster performance degradation

All requests will be blocked when mongos/mongod is retrieving incremental routing

info, henceforth the bigger the cluster is, the more un-responsive it could be.

⚫ Uneven data distribution among shards

One user had to disable balancer on a sharded cluster with 1.4 million chunks

except for several hours during midnight, due to the extreme slow queries caused by

refreshing routing info. However the balancing progress made during midnight never

caught up to close the gap, and the shards imbalance ends up like below figures, and is

still worsening:

⚫ Increasing development & maintenance complexity

In order to avoid serious service degradation caused by routing problems, some

users would strictly limit the data size of collections. When the data size in a collection

exceeds certain threshold (say 4TB), they may need to split the collection manually.

This would add a lot of complexity for development & maintenance and counteracts

the advantage of MongoDB’s data distribution capability.

⚫ CPU spikes

If multiple collections’ routing info is being refreshed at the same time, CPU

resources would easily exhaust.

3. MongoDB Routing Info Refresh

Mechanism Limitation Analysis

This section briefly introduces the mechanism and its limitation of refreshing routing

info in MongoDB v5.0.

3.1 Mongos/mongod incremental routing info retrieval

workflow

Step 1: Get changedChunk from config server

Retrieve ChunkInfo from config server if its _lastmod is greater than local

collectionVersion, then generate changedChunks.

Step 2: Iterate all ChunkVectors’ members in old ChunkMap and compare with

changedChunks to generate updatedChunkMap.

Based on full history routing info in old ChunkMap, and incremental info in

changedChunks, generate a new updatedChunkMap where ChunkVector and

collectionVersion (or ShardVersionMap) are updated.

Step 3: Re-iterate updatedChunkMap and generate new ShardVersionMap

 Re-iterate chunkInfo in updatedChunkMap.ChunkVector，generate new

shardVersion hash table and store it in updatedChunkMap.ShardVersionMap, as below:

As of now a complete updatedChunkMap is generated.

Step 4: Iterate old ChunkVector and free reference counts of shared_ptr

 This step also requires a traversal of ChunkVector.

3.2. mongos/mongod incremental routing info

performance bottleneck

According to the workflow described in last section, it’s certain that even retrieving

just one incremental chunk info requires thre ChunkVector traversals which are obvious

performance bottlenecks:

⚫ Bottleneck 1: Generating updatedChunkMap requires ChunkVector traversal

⚫ Bottleneck 2: Generating ShardVersionMap requires ChunkVector traversal

⚫ Bottleneck 3: Freeing reference counts of ChunkVector’s shared_ptr，requires

ChunkVector traversal as well

Time cost increases exponentially as chunk number grows when these processes are

performed, leading to slow user queries.

4. Proposed MongoDB Incremental

Routing Info Refresh Method: Two-

Dimensional Sorting & Search

This section introduces key processes of the proposed method on ChunkInfo storage,

search and update.

4.1 Store Full Routing Info in Two-Dimensional Data

Structure

The new method stores and manipulate routing info in ChunkMap with below objects:

⚫ Horizontal Map

horizontalMap: std::map< std::pair<std::string, ChunkVector *>>

Each map element stores the maxKey of the ChunkInfo, horizontalMap is sorted by

maxKey in ascending order.

⚫ Vertical Vector

verticalVector: std::vector<std::shared_ptr<ChunkInfo>>

Each Vector element stores a portion of ChunkInfo ascendingly. Within the

verticalVector, chunkInfo is also stored in ascending order.

⚫ Horizontal Search

horizontalCursor: Locate target verticalVector among horizontal map by maxKey

utilizing Binary Search.

⚫ Vertical Search

verticalCursor: Also utilize Binary Search to locate chunkInfo among vertical vectors by

maxKey.

4.2 Two-Dimensional Search: Point Search + Range

Search

Point Search

Take search MQL: db.xxx.find({id: 805}) as example:

Step 1: Horizontal search to locate target horizontalMap’s cursor

 Horizontal binary search: Check std::lower_bound to find the first member whose

maxKey being greater than 805, here we find the member with maxKey 1600.

Step 2: Vertical search to locate target ChunkInfo

 Vertical binary search: Find the first chunkInfo where 805 falls into its key range.

Range Search

Take search MQL: db.xxx.find({id: {$gte: 505, $lte: 805}) as example:

Step 1: Horizontal search to locate lower and upper boundaries for ChunkVector

Determine the lower and upper boundaries for the cursor of horizontal ChunkVectors

in the search range first.

Step 2: Vertical search to locate the boundaries for the ChunkInfo

Then locate the vertical boundaries to get the corresponding ChunkInfo.

4.3 Generate New ChunkMap Using Incremental

Routing Info

Step 1: Duplicate a new horizontalMap

*Duplicate a new horizontal map, with pointers pointing to the same verticalVectors.

Step 2: Generate a new ChunkVector by merging the untouched ChunkInfo and the

updated ChunkInfo.

 *Use createMerged method to populate the new ChunkVector.

Step 3: Redirect ChunkVector’s pointer in the horizontalMap to the

newChunkVector

After redirection, the new ChunkMap with updated ChunkInfo is generated.

4.4 Rebalance Mechanism: Vertical Vectors Split

As routing info keeps getting updated, some chunks may have been split too many

times while others not, causing imbalance between vertical vectors’ sizes (or depths in

the chart), as below:

Traversal against the big vertical vector could take exceptionally long time and cause

performance issue again. In order to avoid such imbalance, if one vertical vector size is

too big, we can split it with following steps:

⚫ Add a configurable parameter to control vertical vector’s sizes

Add “routeRefreshCacheVerticalDepth” as a startup parameter for mongos &

mongod, default to 500.

⚫ Automatic balancing - Split ChunkVector

When a verticalVector’s size exceeds routeRefreshCacheVerticalDepth, we split it to

two vectors.

4.5 Rebalance Mechanism: Vertical ChunkInfo

Merge

There’re two types of vertical ChunkInfo Merge: merge in single verticalVector and

merge between multiple verticalVectors.

⚫ Single verticalVector’s ChunkInfo merge

*Iterate oldVerticalVector and changedChunks to generate newVerticalVector.

(createMerged)

⚫ Multiple verticalVectors’ ChunkInfo merge

Besides merge in single verticalVectors, ChunkVectors in horizontalMap will be

merged

4.6 Routing Info Validation

When handling updated ChunkInfo, the ChunkMap is updated and its underlying

horizontalMap and verticalVector’s structure will be changed. The integrity of the updated

rounting info needs to be validated along with the ChunkInfo updates. Here’s the main

checklist:

⚫ Adjacent ChunkInfo boundaries validation

Upper boundary of a ChunkInfo should equal to lower boundary of the next ChunkInfo.

⚫ Epoch check

ChunkInfo from the same collection should have the same epoch.

⚫ ChunkInfo version check

Updated ChunkInfo version should equal to or be greater than existing

collectionVersion.

⚫ MinKey、MaxKey validation

In the ChunkMap, the lowest ChunkInfo boundary must be the value defined in

macro MinKey, and the uppermost ChunkInfo boundary must be MaxKey’s value.

4.7 Summary of Optimization

In the official release, refreshing routing info requires iterating full ChunkInfo in the

ChunkMap twice, plus iterating ChunkVector once to free shared pointers – This could be

very time- & resource-consuming if the chunk size exceeds certain threshold.

The updated _chunkMap and algorithm in the proposed method requires only one

iteration on a very small portion of ChunkInfo based on the changed Chunks to update

routing info: _chunkMap, _collectionVersion & _shardVersions.

Pull Request has been created: https://github.com/mongodb/mongo/pull/1505

5. Performance Comparison and

Optimization Benefit

⚫ Performance comparison before and after optimization

MongoDB

Version

Total Data

Size(TB)

Total Chunk

Number(M)

Elapsed Time

of queries(ms)

Elapsed Time after

optimization (ms)

3.6 80 4.5 4500 2

4.0 1.2 0.25 300 2

4.2 25 1.5 1200 2

5.0 30 2 910 2

5.0 80 5 2600 2

After optimization, refreshing incremental routing info’s time cost is around 2ms, and

most of the elapsed time is spent on retrieving changed chunks from the Config Server,

while generating the new ChunkMap only takes a very short period (< 1ms).

⚫ Logs before and after optimization(5M chunk size)

Logs before optimization:

3. {"t": {"$date": "2022-10-17T11: 15: 56.209+08: 00"},"s": "I", "c": "SH_REFR", "id": 4619901, "ctx": "CatalogCache-3","msg":

"Refreshed cached collection","attr": {"namespace": "test.test2","lookupSinceVersion": {"0": {"$timestamp": {"t": 49188,"i": 1}},"1":

{"$oid": "626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i": 6}}},"newVersion": {"chunkVersion": {"0":

{"$timestamp": {"t": 49189,"i": 1}},"1": {"$oid": "626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i":

6}}},"forcedRefreshSequenceNum": 15,"epochDisambiguatingSequenceNum": 17},"timeInStore": {"chunkVersion": {"0":

{"$timestamp": {"t": 49189,"i": 1}},"1": {"$oid": "626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i":

6}}},"forcedRefreshSequenceNum": 15,"epochDisambiguatingSequenceNum": 16},"durationMillis": 2442}}

4. {"t": {"$date": "2022-10-17T11: 15: 56.238+08: 00"},"s": "I", "c": "COMMAND", "id": 51803, "ctx": "conn31","msg":

"Slow query","attr": {"type": "command","ns": "test.test2","appName": "MongoDB Shell","command": {"find": "test2","filter": {"id":

12},"lsid": {"id": {"$uuid": "60e64fb3-900e-4dc4-8295-0b41f30f9782"}},"$clusterTime": {"clusterTime": {"$timestamp": {"t":

1665994442,"i": 1}},"signature": {"hash": {"$binary": {"base64": "AAAAAAAAAAAAAAAAAAAAAAAAAAA=","subType":

"0"}},"keyId": 0}},"$db": "test"},"nShards": 1,"cursorExhausted": true,"numYields": 0,"nreturned": 3,"reslen": 663,"readConcern":

{"level": "local","provenance": "implicitDefault"},"remote": "127.0.0.1: 34674","protocol": "op_msg","durationMillis": 3136}}

Logs after optimization:

1. {"t": {"$date": "2022-10-17T15: 40: 01.742+08: 00"},"s": "I", "c": "SH_REFR", "id": 4619901, "ctx": "CatalogCache-6","msg":

"Refreshed cached collection","attr": {"namespace": "test.test2","lookupSinceVersion": {"0": {"$timestamp": {"t": 49185,"i": 1}},"1":

{"$oid": "626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i": 6}}},"newVersion": {"chunkVersion": {"0":

{"$timestamp": {"t": 49186,"i": 1}},"1": {"$oid": "626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i":

6}}},"forcedRefreshSequenceNum": 27,"epochDisambiguatingSequenceNum": 29},"timeInStore": {"chunkVersion": {"0":

{"$timestamp": {"t": 49186,"i": 1}},"1": {"$oid": "626a663821072b82d9059209"},"2": {"$timestamp": {"t": 1651140151,"i":

6}}},"forcedRefreshSequenceNum": 27,"epochDisambiguatingSequenceNum": 28},"durationMillis": 2}}

2. {"t": {"$date": "2022-10-17T15: 40: 01.781+08: 00"},"s": "I", "c": "COMMAND", "id": 51803, "ctx": "conn30","msg":

"Slow query","attr": {"type": "command","ns": "test.test2","appName": "MongoDB Shell","command": {"find": "test2","filter": {"id":

6},"lsid": {"id": {"$uuid": "f77ce42d-af82-4770-bacf-5e754f74eb6f"}},"$clusterTime": {"clusterTime": {"$timestamp": {"t":

1665992391,"i": 1}},"signature": {"hash": {"$binary": {"base64": "AAAAAAAAAAAAAAAAAAAAAAAAAAA=","subType": "0"}},"keyId":

0}},"$db": "test"},"nShards": 1,"cursorExhausted": true,"numYields": 0,"nreturned": 5,"reslen": 737,"readConcern": {"level":

"local","provenance": "implicitDefault"},"remote": "127.0.0.1: 34268","protocol": "op_msg","durationMillis": 3}}

	Preface
	1. Background
	Case 1: v4.0 Product Cluster with 250k chunks
	Case 2: v4.2 Product Cluster with 1.5m chunks
	Case 3: v3.6 Product Cluster with 4.3m chunks
	Case 4: v5.0 Test Cluster with 2m chunks
	Case 5: v5.0 Test Cluster with 5m chunks

	2. Problem Impact
	3. MongoDB Routing Info Refresh Mechanism Limitation Analysis
	3.1 Mongos/mongod incremental routing info retrieval workflow
	3.2. mongos/mongod incremental routing info performance bottleneck

	4. Proposed MongoDB Incremental Routing Info Refresh Method: Two-Dimensional Sorting & Search
	4.1 Store Full Routing Info in Two-Dimensional Data Structure
	4.2 Two-Dimensional Search: Point Search + Range Search
	4.3 Generate New ChunkMap Using Incremental Routing Info
	4.4 Rebalance Mechanism: Vertical Vectors Split
	4.5 Rebalance Mechanism: Vertical ChunkInfo Merge
	4.6 Routing Info Validation
	4.7 Summary of Optimization

	5. Performance Comparison and Optimization Benefit

