
Put(,)

(June ‘24) Floating-Point Rounding The Crypto Team

Floating-Point Rounding
& BSON Limit

QE-ID-FP-1

June 28, 2024

1 Handling Rounding Errors in Floating-Point
SERVER-91788 identifies an occurrence of floating-point rounding that can lead to correctness
issues in OSTType, Edge and Mincover. This is due to the fact that double and decimal128
cannot represent all possible values in their domain exactly. For example, double has an 11-bit
exponent that allows it to represent values between 10−308 and 10308, but the value 253 +1 cannot
be represented exactly as even though it belongs to the domain. Instead, 253 + 1 is rounded to
253.

Effect on QE ranges. In QE Ranges, one can either use default encodings or more efficient
custom encodings for bounded domains. For the latter, the customer must provide three param-
eters: a lower bound lb on the domain, an upper bound on the domain ub and a (query) precision
prc that determines the precision of the range queries. To determine whether to use a default
encoding or a custom encoding, we need to compute the following quantity

logdomsize(lb, ub, prc) = ⌈log2 ((ub − lb + 1) · 10prc)⌉ (1)

and check if it is strictly less than 64 (in the case of double) and if so, we use a custom encoding.
In the case of decimal128 we check if it is strictly less than 128.

logdomsize is also used by the Edges and Mincover and, in particular, controls the length of
the values’ binary encodings which, in turn, impact the Edge and Mincover algorithms. Being off
by 1, here, will lead to incorrect results.

For example, as pointed out in SERVER-91788 if lb = 0, ub = 253 and prc = 0, then (ub − lb +
1) · 10prc will be rounded to 253 so the log2 will be computed on 253 instead of on 253 + 1 due to
rounding. The final computation (after applying the ceiling) will therefore result in 53 instead
of 54.

Solutions. In the following, we propose two solutions to handle this issue. We prefer the first
solution for reasons we explain below, but are OK with using the second as well if any technical
challenges arise with the first one.

Page 1



Put(,)

(June ‘24) Floating-Point Rounding The Crypto Team

• logdomsize(lb, ub, prc):

1. compute s0 := ⌈log2((ub − lb + 1) · 10prc)⌉ as a double;
2. if s0 ≥ 64, return s0;
3. parse ub as a.a1a2a3 . . . an and lb as b.b1b2. . . bm;
4. if max(n, m) > prc, return error and ask for new parameters;
5. compute s1 := (ub − lb + 1) · 10prc as a double; a

6. compute s2 := double-to-int64(s1);
7. return s3 := ceilLog(s2);

aNote that s1 is a non-negative integer.

Figure 1: Preferred domain size computation when given bounds and precision

1.1 First and Preferred Solution
Before we can describe our first solution, we introduce some terminology. Given a number
represented using either binary or decimal formats we refer to the digits before the binary/decimal
point as its integral digits and to the digits after the binary/decimal point as its fractional digits.
So, for example, given a number 123.987, we refer to the digits 1, 2 and 3 as its integer digits
and to the digits 9, 8 and 7 as its fractional digits.

The first solution is based on the assumption that the customer-provided lower bound lb and
upper bound ub have a number of fractional digits that are at most prc. We will refer to this
as the fractional precision constraint. In this solution, if the fractional precision constraint is
violated (i.e., if the customer provides either lb or ub with more than prc fractional digits) then
we abort and output an error that asks the customer to provide new (lb, ub, prc) that verify the
constraint. The reason we suggest aborting and returning an error if the fractional precision
constraint is violated is because if a customer does provide a lower and/or upper bound that has
more fractional digits than the precision, then the customer has probably misunderstood how to
tune the parameters.

Pseudocode for double. With this in mind, we describe in Figure 2 the steps to compute
logdomsize as in Equation (1) for the case of double. We assume the existence of a function
double-to-int64 that converts doubles to int64s and of a function ceilLog that we describe
in Section 2.

Pseudocode for decimal128. The pseudocode for decimal128 is the same as for double
except that the constant 64 is replaced with 128 in Steps 2 and the function double-to-int64
is replaced with a function double-to-int128.

1.2 Second Solution
In this section, we describe a second possible solution that does not force customers to use
(lb, ub, prc) parameters that meet the fractional precision constraint.

Page 2



Put(,)

(June ‘24) Floating-Point Rounding The Crypto Team

• logdomsize(lb, ub, prc):

1. compute s0 := ⌈log2((ub − lb + 1) · 10prc)⌉ as a double;
2. if s0 ≥ 64, return s0;
3. compute s1 := (ub − lb + 1) · 10prc as a double;
4. compute s2 := ⌊s1⌋;
5. compute s3 := double-to-int64(s2);
6. return s4 := ceilLog(s3);

Figure 2: Alternative domain size computation when given bounds and precision

2 Computing Ceiling of Base-2 Logarithm
Computing ⌊log2⌋. Given an integer s ∈ {0, 1, . . . , 264 − 1}, we denote by s2 its Big Endian
binary representation. We can compute the floor of its base-2 logarithm as

⌊log2(s)⌋ = pfbs0(s2),

where pfbs0 is the position of the first bit set to 1 using 0-indexing. As an example, if s = 9,
then pfbs0(s2) = 3.

Computing ⌈log2⌉. Given an integer s ∈ {0, 1, . . . , 264 − 1}, we can compute the ceiling of its
base-2 logarithm as

⌈log2(s)⌉ = ⌊log2(s)⌋ + 1{(s − 1)2 ∧ s2 ̸= 0},

where ∧ is the bitwise AND operation. The intuition is the following. First, notice that if log2(s)
is a power of 2 then

⌈log2(s)⌉ = ⌊log2(s)⌋ + 0,

whereas if log2(s) is not a power of 2 then

⌈log2(s)⌉ = ⌊log2(s)⌋ + 1

The expression
1{(s − 1)2 ∧ s2 ̸= 0}

outputs 0 if and only if s is a power of 2. Specifically, if s is a power of 2 then s2 will have a single
bit set, s − 1 will flip s2’s bit to 0 and all the following bits to 1 and, therefore, their bitwise and
will be the zero bit string. On the other hand, if s is not a power of two then s2 has at least 2
bits set and it will have at least one of its post-pfbs bits in common with (s − 1)2. Because of
this the bitwise AND will have at least one bit set and will be different from the zero bit string.

Pseudocode. We provide the pseudo-code of the ceilLog function in Figure 3. It takes as
input an integer s ∈ {0, 1, . . . , 264 − 1} and outputs a value ℓ ∈ {0, 1, . . . , 64}. Recall that ∧ is
the bitwise AND operation (i.e., & in C).

Page 3



Put(,)

(June ‘24) Floating-Point Rounding The Crypto Team

• ceilLog(s):

1. if s = 0, return ⊥;
2. compute pfbs := 64 − leadingzeros(s2) − 1;
3. if

(
(s − 1)2 ∧ s2

)
̸= 0,

(a) return pfbs + 1;
4. otherwise,

(a) return pfbs;

Figure 3: The ceilLog function.

3 BSON Limit Bounds
When executing a QE range query, the client generates a cover cvr composed of many edges that,
together, make up the range query. The cover cvr is computed by the Mincover algorithm. When
the trimming and sparsity optimizations are not used, i.e., when the trimming factor tf = 0 and
the sparsity factor sp = 1, then the maximum size of the cover is 2 · log2(n) − 1 where n is the
size of the domain. With higher values of the trimming and sparsity factors, the size of the cover
can get significantly large. The size of the cover matters because the client needs to insert the
cover in a single find query which is stored as a BSON document. As such, we need to make
sure that the size of the cover does not exceed the BSON limit; otherwise this will result in a
correctness error.

Size of the cover. In order to understand whether a cover can fit in a document or not, it
is first important to understand how big the cover can be as function of the trimming factor
tf ∈ N, the sparsity sp ∈ {1, 2, 3, 4}, and the size of the domain n. More precisely, the the cover
size is upper bounded as follows,

#cvr ≤ min
(

n, 2sp−1 ·
(
2tf + 2 log2(n) − 1

))
.

To avoid the correctness error due to the BSON limit, one should check that

min
(

n, 2sp−1 ·
(
2tf + 2 log2(n) − 1

))
< CBSON (2)

where CBSON is the size of the largest cover that can fit in a BSON document. To implement this
check a domain size n and a CBSON value must be chosen. From previous discussions with Server
Security, we assume that CBSON = 300, 000 and we discuss how to set the domain size next.

Size of the domain. The size of the domain n depends on the numerical data type we are
working with and can also depend of the lower bound lb, the upper bound ub, and the precision
prc. In the following, we describe how to set the domain size for each numerical type:

1. if the data type is sint32, sint64 or int64 with lb = ub = ⊥, then n is equal to 232, 264 and
264, respectively;

Page 4



Put(,)

(June ‘24) Floating-Point Rounding The Crypto Team

2. if the data type is sint32, sint64 or int64 with ub ̸= ⊥ and lb ̸= ⊥, then n = 2⌈log2(ub−lb+1)⌉;

3. if the data type is double or decimal128 with lb = ub = ⊥, then n = 264 or n = 2128,
respectively;

4. if the data type is double or decimal128 with lb ̸= ⊥, ub ̸= ⊥ and prc ̸= ⊥, then n =
min(264, 2⌈log2((ub−lb+1)·10prc)⌉) or n = min(2128, 2⌈log2((ub−lb+1)·10prc)⌉), respectively;

Observe that the highest domain size is n = 2128.

Default setting. We assume CBSON = 300, 000 and n = 2128. QE Range sets tf = 6 and
sp = 2 as defaults, so Inequality 2 is verified since

min(n, 2sp−1 · (2tf + 2 log2(n) − 1)) = min(2128, 2 · (26 + 2 · 128 − 1)) = 638 ≪ 300, 000

Page 5


	Handling Rounding Errors in Floating-Point
	First and Preferred Solution
	Second Solution

	Computing Ceiling of Base-2 Logarithm
	BSON Limit Bounds

