Uploaded image for project: 'Core Server'
  1. Core Server
  2. SERVER-21178

Super slow query and increased memory usage on inefficient range queries

    • Type: Icon: Bug Bug
    • Resolution: Duplicate
    • Priority: Icon: Major - P3 Major - P3
    • None
    • Affects Version/s: 3.0.5
    • Component/s: Querying
    • None
    • ALL
    • Hide

      1.insert same data as the structure.
      2.build index.
      3.run query against the index.

      Show
      1.insert same data as the structure. 2.build index. 3.run query against the index.

      It costs more than 20 mins to query 1 hour's data, which is about 10,000 doucuments, and the server's 100GB memory can be used up by these queries.

      Details:
      I setup a server with wiredtiger engine, config like:

      wiredTiger:
          engineConfig:
            cacheSizeGB: 100
            statisticsLogDelaySecs: 0
            journalCompressor: snappy
            directoryForIndexes: true
          collectionConfig:
            blockCompressor: snappy
          indexConfig:
            prefixCompression: true
      

      I have a collection named 'orders'. The documents look like:

      {
        order_id:485548,
        order_status:
        [
          {
            update_time:ISODate("2015-10-28T02:45:00Z"),
            status:1
          },
          {
            update_time:ISODate("2015-10-28T03:18:00Z"),
            status:2
          }
        ]
      }
      

      I built an index:

      "key" : {"order_status.update_time" : -1,  "order_status.status" : -1}
      

      then I run this query:

      db.order.find({ "order_status" : { "$elemMatch" : { "update_time" : { "$gte" : ISODate("2015-10-28T02:00:00Z"), "$lt" : ISODate("2015-10-28T03:00:00Z") }, "status" : 2 } } }).explain();
      

      I get:

      "indexBounds" :
      {
        "order_status.update_time" :
        [
          "[new Date(1446001200000), true)"
        ],
        "order_status.status" :
        [
          "[2.0, 2.0]"
        ]
      }
      

      I guess this means scan all data before '2015-10-28T03:00:00Z', which is more than 40GB data.

      after I change the query to

      db.order.find({ "order_status" : { "$elemMatch" : { "update_time" : { "$gte" : ISODate("2015-10-28T02:00:00Z") }, "status" : 2 } } }).explain();
      

      I get:

      "indexBounds" :
      {
        "order_status.update_time" :
        [
          "[new Date(9223372036854775807), new Date(1445997600000)]"
        ],
        "order_status.status" :
        [
          "[2.0, 2.0]"
        ]
      }
      

      This looks better and runs much faster (finished within a second), but how can I get my original query work?

        1. mongo_query_explain.txt
          10 kB
        2. mongo_index_bound_test.txt
          2 kB

            Assignee:
            david.storch@mongodb.com David Storch
            Reporter:
            Hoyt Ren Hoyt Ren
            Votes:
            0 Vote for this issue
            Watchers:
            4 Start watching this issue

              Created:
              Updated:
              Resolved: